3.94 \(\int \frac {x^2}{\sqrt {\sinh ^{-1}(a x)}} \, dx\)

Optimal. Leaf size=105 \[ -\frac {\sqrt {\pi } \text {erf}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erf}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}-\frac {\sqrt {\pi } \text {erfi}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erfi}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3} \]

[Out]

1/24*erf(3^(1/2)*arcsinh(a*x)^(1/2))*3^(1/2)*Pi^(1/2)/a^3+1/24*erfi(3^(1/2)*arcsinh(a*x)^(1/2))*3^(1/2)*Pi^(1/
2)/a^3-1/8*erf(arcsinh(a*x)^(1/2))*Pi^(1/2)/a^3-1/8*erfi(arcsinh(a*x)^(1/2))*Pi^(1/2)/a^3

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5669, 5448, 3307, 2180, 2204, 2205} \[ -\frac {\sqrt {\pi } \text {Erf}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {Erf}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}-\frac {\sqrt {\pi } \text {Erfi}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {Erfi}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[ArcSinh[a*x]],x]

[Out]

-(Sqrt[Pi]*Erf[Sqrt[ArcSinh[a*x]]])/(8*a^3) + (Sqrt[Pi/3]*Erf[Sqrt[3]*Sqrt[ArcSinh[a*x]]])/(8*a^3) - (Sqrt[Pi]
*Erfi[Sqrt[ArcSinh[a*x]]])/(8*a^3) + (Sqrt[Pi/3]*Erfi[Sqrt[3]*Sqrt[ArcSinh[a*x]]])/(8*a^3)

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5669

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Sinh[x]^m*Cosh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {\sinh ^{-1}(a x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\cosh (x) \sinh ^2(x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{a^3}\\ &=\frac {\operatorname {Subst}\left (\int \left (-\frac {\cosh (x)}{4 \sqrt {x}}+\frac {\cosh (3 x)}{4 \sqrt {x}}\right ) \, dx,x,\sinh ^{-1}(a x)\right )}{a^3}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {\cosh (x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{4 a^3}+\frac {\operatorname {Subst}\left (\int \frac {\cosh (3 x)}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{4 a^3}\\ &=\frac {\operatorname {Subst}\left (\int \frac {e^{-3 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{8 a^3}-\frac {\operatorname {Subst}\left (\int \frac {e^{-x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{8 a^3}-\frac {\operatorname {Subst}\left (\int \frac {e^x}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{8 a^3}+\frac {\operatorname {Subst}\left (\int \frac {e^{3 x}}{\sqrt {x}} \, dx,x,\sinh ^{-1}(a x)\right )}{8 a^3}\\ &=\frac {\operatorname {Subst}\left (\int e^{-3 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{4 a^3}-\frac {\operatorname {Subst}\left (\int e^{-x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{4 a^3}-\frac {\operatorname {Subst}\left (\int e^{x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{4 a^3}+\frac {\operatorname {Subst}\left (\int e^{3 x^2} \, dx,x,\sqrt {\sinh ^{-1}(a x)}\right )}{4 a^3}\\ &=-\frac {\sqrt {\pi } \text {erf}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erf}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}-\frac {\sqrt {\pi } \text {erfi}\left (\sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}+\frac {\sqrt {\frac {\pi }{3}} \text {erfi}\left (\sqrt {3} \sqrt {\sinh ^{-1}(a x)}\right )}{8 a^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 99, normalized size = 0.94 \[ \frac {\frac {\sqrt {3} \sqrt {-\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},-3 \sinh ^{-1}(a x)\right )}{\sqrt {\sinh ^{-1}(a x)}}+\frac {3 \sqrt {\sinh ^{-1}(a x)} \Gamma \left (\frac {1}{2},-\sinh ^{-1}(a x)\right )}{\sqrt {-\sinh ^{-1}(a x)}}+3 \Gamma \left (\frac {1}{2},\sinh ^{-1}(a x)\right )-\sqrt {3} \Gamma \left (\frac {1}{2},3 \sinh ^{-1}(a x)\right )}{24 a^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2/Sqrt[ArcSinh[a*x]],x]

[Out]

((Sqrt[3]*Sqrt[-ArcSinh[a*x]]*Gamma[1/2, -3*ArcSinh[a*x]])/Sqrt[ArcSinh[a*x]] + (3*Sqrt[ArcSinh[a*x]]*Gamma[1/
2, -ArcSinh[a*x]])/Sqrt[-ArcSinh[a*x]] + 3*Gamma[1/2, ArcSinh[a*x]] - Sqrt[3]*Gamma[1/2, 3*ArcSinh[a*x]])/(24*
a^3)

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arcsinh(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {\operatorname {arsinh}\left (a x\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arcsinh(a*x)^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/sqrt(arcsinh(a*x)), x)

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {\arcsinh \left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/arcsinh(a*x)^(1/2),x)

[Out]

int(x^2/arcsinh(a*x)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {\operatorname {arsinh}\left (a x\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/arcsinh(a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(arcsinh(a*x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^2}{\sqrt {\mathrm {asinh}\left (a\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/asinh(a*x)^(1/2),x)

[Out]

int(x^2/asinh(a*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {\operatorname {asinh}{\left (a x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/asinh(a*x)**(1/2),x)

[Out]

Integral(x**2/sqrt(asinh(a*x)), x)

________________________________________________________________________________________